تمامی فایل های موجود در مکتوب، توسط کاربران عرضه می شود. اگر مالک فایلی هستید که بدون اطلاع شما در سایت قرار گرفته به ما پیام دهید
Predicting the attributes of social network users using graph-based
فروشنده فایل
فروشنده فایل : 3178

Predicting the attributes of social network users using graph-based

فایل Predicting the attributes of social network users using graph-based با فرمت .zip برای شما کاربر محترم آماده دریافت و دانلود می باشد

Predicting the attributes of social network users using graph-based

دسته بندی: عمومی » گوناگون

تعداد مشاهده: 9 مشاهده

فرمت فایل دانلودی:.zip

فرمت فایل اصلی: .zip

حجم فایل:100 کیلوبایت

  پرداخت و دانلود  قیمت: 7,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.
0 0 گزارش
  • Abstract
    Attribute information from social network users can be used as a basis for grouping users, sharing content, and recommending friends. However, in practice, not all users provide their attributes. In this paper, we try to use information from both the graph structure of the social network and the known attributes of users to predict the unknown attributes of users. Considering the topological structure of a social network and the characteristics of users’ data, we select a graph-based semi-supervised learning algorithm to predict users’ attributes. We design different strategies for computing the relational weights between users. The experimental results on real-world data from Renren demonstrate that the semi-supervised learning method is more suitable for predicting users’ attributes compared with the supervised learning models, and our strategies for computing the relational weights between users are effective. We also analyze the effect of different social relations on predicting users’ attributes.

    برچسب ها: Predicting the attributes social network users using graph based
  

به ما اعتماد کنید

تمامي كالاها و خدمات اين فروشگاه، حسب مورد داراي مجوزهاي لازم از مراجع مربوطه مي‌باشند و فعاليت‌هاي اين سايت تابع قوانين و مقررات جمهوري اسلامي ايران است.
این سایت در ستاد سازماندهی ثبت شده است.

درباره ما

فروش اینترنتی فایل های قابل دانلود
در صورتی که نیاز به راهنمایی دارید، صفحه راهنمای سایت را مطالعه فرمایید.

تمام حقوق این سایت محفوظ است. کپی برداری پیگرد قانونی دارد.