تمامی فایل های موجود در مکتوب، توسط کاربران عرضه می شود. اگر مالک فایلی هستید که بدون اطلاع شما در سایت قرار گرفته به ما پیام دهید
بررسی الگوریتم بهینه سازی Bayesian
فروشنده فایل
فروشنده فایل : 3172

بررسی الگوریتم بهینه سازی Bayesian

فایل بررسی الگوریتم بهینه سازی Bayesian با فرمت doc برای شما کاربر محترم آماده دریافت و دانلود می باشد

مراجع‌را می‌توان به عنوان یک ترازوی خوب برای مقایسه روشهای مختلف بکار برد. بعنوان مثال: مراجع استراتژی، انتخاب و جایگزینی را بکار گرفتند که با r BOA ها یکسانند. در‌بین الگوریتم‌های متنوع‌دانش سرپرستی برای انجام دادن مدلهای مخلوط، دسته بندی یک کاندیدای مناسب برحسب بازدهی محاسباتی دیده شده است. بطور

دسته بندی: عمومی » گوناگون

تعداد مشاهده: 5 مشاهده

فرمت فایل دانلودی:doc

فرمت فایل اصلی: doc

تعداد صفحات: 62

حجم فایل:843 کیلوبایت

  پرداخت و دانلود  قیمت: 9,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.
0 0 گزارش
  • مراجع‌را می‌توان به عنوان یک ترازوی خوب برای مقایسه روشهای مختلف بکار برد. بعنوان مثال: مراجع استراتژی، انتخاب و جایگزینی را بکار گرفتند که با r BOA ها یکسانند. در‌بین الگوریتم‌های متنوع‌دانش سرپرستی برای انجام دادن مدلهای مخلوط، دسته بندی یک کاندیدای مناسب برحسب بازدهی محاسباتی دیده شده است.
    بطور کلی EDAها یک تقریب تقسیمی را بکار می‌گیرند که تلاش می‌کند یک مجموعه از اطلاعات‌چند بعدی را به تعدادی‌زیر مجموعه دسته بندی کند. مثالهای محتمل شامل الگوریتم K- Means و الگوریتم رهبر تصادفی (RLA) است.
    مکانیزم آنها در زیر به صورت مختصر شرح داده شده است:
    الگوریتم K- means نمونه‌های داده را به K زیر مجموعه غیر تهی تقسیم می‌کند. مختصات میانگین حسابی گروههای رایج محاسبه می‌شود و هر نمونه به نزدیکترین تقسیم‌بندی اشاره می‌کند. پروسه ادامه می‌یابد تا زمانیکه گمارش دیگری اتفاق نیافتد. در RLA هر نمونه تصادفی انتخاب شده متعلق به نزدیکترین طبقه بندی که رهبر آن فاصله با نمونه‌اش زیر حد داده شده قرار دارد. نتیجه پس از فقط یکبار مرور کردن هر نمونه بدست می‌آید.
    توجه کنید که الگوریتم RLA سریعتر از الگوریتم K- means است. (RLA) تا حدودی کمتر دقیق است. علاوه بر این تکرار که در مدلهای مختلف استفاده می‌شود (در مدل انتخاب) کمتر از مدلهای جاسازی است. بنابراین الگوریتم K- means و RLA (با حدی به میزان 0.3) به ترتیب کاندیداهای مناسبی برای مدل انتخاب و مدل جاسازی هستند. مدل جاسازی و مدل نمونه برداری با توجه به کارایی‌شان برای مسائل بزرگ تجزیه پذیر، براساس اصل حداکثر ترکیب زیر مسئله‌ها انجام داده می‌شوند.

    نتایج کارایی r BOA
    علاوه بر این توزیع احتمال نرمال به علت فواید ذاتی (خصوصیات تقریب نزدیک و تجزیه مناسب و آسان) آن به کار گرفته شده است. انتخاب کوتاه که نیمه بالای جامعه را انتخاب می‌کند و BIC با Eq، (5،6) که پارامتر تنظیم آن 0.5 است برای یادگیری یک مدل آماری استفاده نشده بودند. سیاست تجزیه بدترین نیمه جامعه را با نسل جدید تولید شده جایگزین می‌کند. (یعنی جایگزینی نخبه‌ها) چون هیچ اطلاعات قدیمی در ساختار مسئله وجود ندارد. ما 1- را برای تعداد والده‌های مجاز در نظر می‌گیریم، هیچ محدودیتی در مدل انتخاب وجود ندارد. هر آزمایش وقتی که بهینه پیدا شود یا تعداد نسلها به دویست برسد پایان داده می‌شود. همه نتایج بعد از 100 اجرا میانگین گرفته می‌شود.
    شکل 5،7 میانگین تعداد محاسباتی را Rboa انجام می‌دهد تا بهینه RDP را با ، نشان می‌دهد. همچنین این شکل نتیجه PSNR با را نشان می‌دهد.

    برچسب ها: تحقيق مديريت دانلود تحقيق كار تحقيقي مديريت مديريت تحقيق الگوریتم بهینه سازی Bayesian الگوريتم الگوريتم بهينه سازي بهينه سازي Bayesian الگوريتم Bayesian
  

به ما اعتماد کنید

تمامي كالاها و خدمات اين فروشگاه، حسب مورد داراي مجوزهاي لازم از مراجع مربوطه مي‌باشند و فعاليت‌هاي اين سايت تابع قوانين و مقررات جمهوري اسلامي ايران است.
این سایت در ستاد سازماندهی ثبت شده است.

درباره ما

فروش اینترنتی فایل های قابل دانلود
در صورتی که نیاز به راهنمایی دارید، صفحه راهنمای سایت را مطالعه فرمایید.

تمام حقوق این سایت محفوظ است. کپی برداری پیگرد قانونی دارد.